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Instability of localized buckling modes in a
one-dimensional strut model

B y B j ö r n Sandstede
WIAS, Mohrenstraße 39, 10117 Berlin, Germany

Stability of localized solutions arising in a fourth-order differential equation modelling
struts is investigated. It was shown by Buffoni et al. in 1996 that the model exhibits
many multimodal buckling states bifurcating from a primary buckling mode. In this
article, using analytical and numerical techniques, the primary mode is shown to be
unstable under dead loading for all axial loads, while it is likely to be stable under
rigid loading for small axial loads. Furthermore, for general reversible or conservative
systems, stability of the multimodal solutions is established assuming stability of the
primary state. Since this hypothesis is not satisfied for the buckling mode arising
in the strut model, any multimodal buckling state will be unstable under dead and
rigid loading.

1. Introduction

In this article, localized solutions of the fourth-order ordinary differential equation

uxxxx + Puxx + u− u2 = 0, x ∈ R, (1.1)

are investigated. Equation (1.1) describes equilibrium states of a strut resting on an
elastic foundation with a nonlinear softening restoring force (see, for example, Hunt et
al. 1989). Here, x and u are the arc length along the strut and vertical displacement,
respectively. The parameter P denotes the axial load, while the bending stiffness has
been rescaled to unity. The underlying geometry is illustrated in figure 1.

Note that (1.1) is Hamiltonian with energy given by

H(u) = uxuxxx − 1
2u

2
xx + 1

2Pu
2
x + 1

2u
2 − 1

3u
3.

By definition, localized solutions h of (1.1) satisfy

lim
x→±∞

h(x) = 0,

i.e. they correspond to homoclinic solutions of (1.1). It was shown by Amick & Toland
(1992) that (1.1) has an even homoclinic solution h for each P ∈ (−∞,−2 + η) for
some η > 0. In addition, they proved uniqueness for P 6 −2, whence we refer
to these localized solutions as the primary buckling modes. The solutions h are
transversely constructed , i.e. stable and unstable manifolds of the zero equilibrium
of (1.1) intersect transversely at u = h(0) in the zero level set of the energy H
(see Buffoni et al. 1996). Using the results of Devaney (1976), Buffoni et al. (1996)
also proved that for any P ∈ (−2,−2 + η), with η > 0 sufficiently small, infinitely
many buckling modes bifurcate from the primary state. The bifurcating equilibria are
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P
P

F(u) = u – u2 

Figure 1. A strut on an asymmetric softening foundation with restoring force F under an axial
load P .

multimodal solutions resembling concatenated, widely spaced copies of the primary
state. There is numerical evidence that the primary buckling mode h persists up
to P = 2 while still being transversely constructed (see Buffoni et al. 1996 and the
references cited therein). The bifurcation to multimodal solutions mentioned above
would then occur for all P ∈ (−2, 2).

It is an interesting problem to determine whether these localized buckling modes
are stable in an appropriate sense. In the present context, we adopt the notion of
stability used in mechanical engineering and minimize the energy. For given axial
load P , the total potential energy of localized equilibria is given by

W (u) = 1
2

∫ ∞
−∞

(u2
xx − Pu2

x + u2 − 2
3u

3)dx, (1.2)

(see, for example, Hunt et al. 1989). We consider two different loading devices for
(1.1). Under dead loading , the deflection u adjusts according to (1.1). Accessing
stability of an equilibrium under dead loading is then equivalent to minimizing the
total energy W (u) for fixed P (see Thompson & Hunt 1973). This task can be
accomplished by verifying positive definiteness of the second variation ∇2W (h) of
W given by

L(h)v := ∇2W (h)v = vxxxx + Pvxx + (1− 2h)v, (1.3)
at a buckling state h. Note that, on account of translation invariance of W (u),
L(h) has an eigenvalue at zero. Under rigid loading , the axial load P and the total
displacement

E(u) = 1
2

∫ ∞
−∞

u2
x dx, (1.4)

are fixed. We then have to minimize W (u) under the additional constraint

E(u) = const.,

(see Thompson 1979, ch. 9). This amounts to proving positive definiteness of L(h)
restricted to the kernel of ∇E(h).

In this paper, stability of localized solutions h of (1.1) is addressed under both
dead and rigid loading by analytical and numerical techniques. In §2, stability of
the primary buckling state is investigated. It is shown by analytical means that the
primary mode is unstable under dead loading for all P < 2. For P ∈ (−∞,−2 + η),
we prove that there is precisely one negative eigenvalue. For struts under rigid load-
ing, an integral condition for stability is derived analytically. Yet we are not able
to verify this condition rigorously. However, using numerical techniques, it is likely
that the primary state is unstable under rigid loading for P < P∗ and stable for
P > P∗, where P∗ ≈ 0.8175. In §3, we address the issue of stability of the mul-
timodal states existing for P ∈ (−2, 2). It is shown that all multimodal solutions
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consisting of widely spaced copies of the primary pulse are unstable under dead and
rigid loading. Moreover, we determine n critical eigenvalues near zero of the second
variation ∇2W evaluated at n-modal buckling states. They can be used to charac-
terize obstacles for the coalescence of different multimodal states in saddle-node or
pitchfork bifurcations. The results presented in §3 hold for fairly general systems
under generic assumptions on the nature of the primary mode. Thus, they may be
applicable to equations for which the primary mode is stable guaranteeing existence
of infinitely many stable multimodal states. In addition, existence of multimodal
states is shown for 2m-dimensional equations extending previous results obtained by
Devaney (1976), Champneys (1994) and Härterich (1993). Finally, in §4, we comment
on other equations exhibiting similar phenomena.

2. Instability of the primary buckling mode

We shall determine the spectrum of the second variation

L(h)v = vxxxx + Pvxx + (1− 2h)v, (2.1)

of the total energy evaluated at a localized solution, h, of equation (1.1). The operator
L(h) is self-adjoint in L2(R) with domain H4(R). Therefore, its spectrum is confined
to the real line. Throughout, we denote the L2-scalar product by 〈· , ·〉.

(a ) Dead loading
In this section, we show that the primary buckling state is unstable under dead

loading. As mentioned in §1, this is tantamount to proving the existence of at least
one negative eigenvalue of the second variation L(h) of the total energy W . Indeed,
the potential energy is then not minimized and any small imperfection will cause the
mechanical system to snap into a different stable equilibrium.

Lemma 2.1. Let P < 2 and h be a localized solution of (1.1).
(i) The essential spectrum of L(h) is then given by σess(L(h)) = [1,∞).
(ii) The operator L(h) has at least one negative eigenvalue.
(iii) If the localized solution h is transversely constructed, zero is a simple eigen-

value of L(h). In particular, when P is varied, the number of negative eigenvalues
stays constant until h ceases to be transversely constructed.

Proof. Since P < 2, h(x) converges to zero exponentially as |x| tends to infinity.
Therefore, the essential spectrum of L(h) coincides with the interval [1,∞) (see Henry
1981, Appendix to §5). We prove (ii) next. Multiplying (1.1) with h, integrating over
x, and using P < 2, we have∫ ∞

−∞
h3 dx =

∫ ∞
−∞

(h2
xx − Ph2

x + h2)dx >
∫ ∞
−∞

(hxx + h)2dx > 0.

Therefore,

〈L(h)h, h〉 =
∫ ∞
−∞

(h2
xx − Ph2

x + h2 − 2h3)dx = −
∫ ∞
−∞

h3 dx < 0.

Thus, we conclude the existence of (at least) one negative eigenvalue of L(h).
Any eigenvalue of L(h) has geometric multiplicity less or equal to two. Since L(h) is

self-adjoint, all eigenvalues are semi-simple. If h is transversely constructed, it is clear
that the eigenvalue zero with eigenfunction hx is simple. Therefore, no eigenvalues
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2086 B. Sandstede

can cross the imaginary axis upon changing P . On the other hand, since L(h) is
sectorial, no eigenvalues can escape to minus infinity either.

Next, we consider the transversely constructed primary buckling state which exists
for P < −2 + η by results of Buffoni et al. (1996).

Lemma 2.2. Let P ∈ (−∞,−2 + η) and consider the operator L(h) evaluated at
the transversely constructed primary buckling mode. There exists then precisely one
negative eigenvalue λ0 of L(h).

Proof. Due to lemma 2.1(ii), the operator has at least one negative eigenvalue. It
remains to prove uniqueness. On account of transversality of the primary mode and
lemma 2.1(iii), it suffices to prove the claim for P → −∞.

We exploit a coordinate transformation introduced by Amick & Toland (1992)
for P → −∞. Let −P =

√
ε+ (1/

√
ε) and y = ε1/4x. In the new coordinates, the

localized solutions are denoted hε(y) making the dependence on the parameter ε
explicit. By (Amick & Toland 1992), the continuous family hε converges in the sup-
norm toward h0(y) := 3

2 sech2( 1
2y) as ε→ 0. The operator L(h) transforms into

Lεv := εvyyyy − (1 + ε)vyy + (1− 2hε(y))v. (2.2)

The eigenvalue problem for L0 at ε = 0 reads

− vyy + (1− 3 sech2( 1
2y))v = λv, v ∈ H4(R). (2.3)

Changing coordinates according to z = tanh(1
2y) transforms (2.3) into the Legendre

equation

(1− z2)vzz − 2zvz +
(

12− 4(1− λ)
1− z2

)
v = 0, z ∈ [−1, 1].

Applying Abramowitz & Stegun (1972, ch. 8), it is straightforward to calculate the
eigenvalues λn of (2.3). We obtain λ0 = −5

4 , λ1 = 0, and λ2 = 3
4 . The eigenfunctions

associated with λ0 and λ1 are v0(y) = sech3( 1
2y) and v1(y) = (d/dy)h0(y), respec-

tively. Since L0 is sectorial, there exists then a constant K > 0 such that

〈L0v, v〉 > K|v|2H1(R), for all v ∈ (span{v0, v1})⊥ ∩H1(R).

For positive ε > 0 sufficiently small and all v ∈ (span{v0, v1})⊥ ∩ H2(R), we have
therefore

〈Lεv, v〉 =
∫ ∞
−∞

(εv2
yy + (1 + ε)v2

y + (1− 2hε)v2) dy

> ε(|vyy|2L2(R) + |vy|2L2(R)) +K|v|2H1(R) − 2|hε − h0|C0(R)|v|2L2(R)

> 1
2K|v|2L2(R), (2.4)

since |hεn − h0|C0(R) → 0 as n → ∞. We will now argue by contradiction in order
to prove uniqueness of the negative eigenvalue of the operator Lε for ε > 0. Thus,
assume that there exists a sequence εn ↘ 0 such that Lεn has two or more strictly
negative eigenvalues. Note that zero is always a (simple) eigenvalue. The generalized
eigenspace spanned by the associated eigenfunctions has therefore dimension greater
or equal to three. In particular, its intersection with the space (span{v0, v1})⊥ is
non-trivial. For any n, choose a function wn with |wn|L2(R) = 1 in this intersection.
Note that wn ∈ H2(R) since eigenfunctions are actually smooth. The inequality

〈Lεnwn, wn〉 6 0
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Figure 2. The negative eigenvalue λ0 of the operator L(h) at the primary buckling mode. For
P = −100, we have λ0 = −1.24998 ≈ − 5

4 .

then holds. Substituting (2.4), we obtain

0 > 〈Lεnwn, wn〉 > 1
2K|wn|2L2(R),

and reach a contradiction. This proves the lemma.

Combining lemmata 2.1(iii) and 2.2, we see that there exists a unique negative
eigenvalue of L(h) as long as h is transversely constructed.

We computed the negative eigenvalue λ0 of L(h) using the driver HOMCONT (see
Champneys et al. 1995, 1996) for the software package AUTO written by Doedel
& Kernévez (1986). Projection boundary conditions with respect to the constant-
coefficient operator vxxxx+Pvxx+(1−λ)v are employed for the eigenfunction v0. The
initial guess v0(y) = sech3( 1

2y), λ0 = −5
4 at P = −100 has been used. Continuation

in P shows that the negative eigenvalue persists up to P = 2 (see figure 2).

(b ) The dynamical problem
Vibrations of the primary mode under dead loading are governed by the nonlinear

equation:
utt + uxxxx + Puxx + u− u2 = 0 x ∈ R (2.5)

(see Lindberg & Florence 1987). We rewrite (2.5) as the first-order system(
ut

vt

)
=

(
v

−uxxxx − Puxx − u+ u2

)
. (2.6)

The linearization of (2.6) at a buckling mode (u, v) = (h, 0) is given by

L(h, 0) =

(
0 id

−∂xxxx − P∂xx − id +2h 0

)
=

(
0 id

−L(h) 0

)
.

Equation (2.6) generates a C0-semiflow on the space H2(R)× L2(R) (see, for exam-
ple, Pazy 1983). For P < 2, L(h) has at least one negative eigenvalue λ0 (see lem-
ma 2.1). Thus, the operator L has two eigenvalues ±√−λ0 on the real axis. The
following lemma is then a consequence of Grillakis (1988, Appendix).

Lemma 2.3. Any buckling mode of (1.1) under dead loading is unstable with
respect to equation (2.5). In other words, there are a neighbourhood U of (h, 0) and
initial conditions arbitrary close to (h, 0) such that the associated solutions leave the
set U .
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2088 B. Sandstede

The conclusion of lemma 2.3 is also true for parabolic or damped hyperbolic ver-
sions of equation (2.5).

(c ) Rigid loading
Rigid loading is characterized by introducing an additional constraint: only imper-

fections with a prescribed total deflection are admissible. We therefore consider the
system

uxxxx + Puxx + u− u2 = 0, E(u) = 1
2

∫ ∞
−∞

u2
x dx = const.

Stability of the buckling mode h is equivalent to proving positive definiteness of the
second variation L(h) defined in (1.3) restricted to the kernel of the gradient ∇E(h)
of the constraint E . The gradient ∇E(h) : L2(R)→ R is given by

∇E(h)v = 〈hxx, v〉 =
∫ ∞
−∞

hxxv dx.

First, we exploit that the functional E(u) is invariant under translation. As a con-
sequence, hx ∈ ker∇E(h) since

∫∞
−∞ hxxhx dx = 0 by integration by parts. We may

therefore restrict L(h) to the space

H := ker∇E(h) ∩ (span{hx})⊥ ⊂ L2(R).

Note that H is of codimension two. We have then to verify that

〈L(h)v, v〉 > 0, v ∈ H. (2.7)

Remark 2.4. A buckling state h can only be stable under rigid loading if h is
transversely constructed and the operator L(h) has a unique negative eigenvalue.

Proof. By lemma 2.1, L(h) has at least two eigenvalues less or equal to zero.
Assume that there are at least three of them. There is then a three-dimensional
subspace W of L2(R) such that hx ∈W and 〈L(h)w,w〉 6 0 for all w ∈W . Therefore,
W ∩H is at least one dimensional, and (2.7) is not satisfied.

It remains therefore to consider transversely constructed localized solutions h. We
remark that whenever a localized solution h is transversely constructed at P = P0
there exists a unique family h(P ) of buckling modes defined for P close to P0 such
that h(P0) = h. With this remark in mind, we formulate the next lemma.

Lemma 2.5. Let P < 2. Assume that h is transversely constructed such that L(h)
has precisely one negative eigenvalue. Condition (2.7) is then met if, and only if,

d
dP
E(h(P )) < 0. (2.8)

Here, h(P ) denotes the family of localized solutions mentioned before the lemma.

In other words, h(P ) is stable at P = P0 under rigid loading if, and only if, E(h(P ))
decreases strictly near P0.

Proof. Since zero is a simple eigenvalue of L(h) by assumption, the operator L(h)
is invertible on (span{hx})⊥. It is a consequence of Alexander et al. (1996), proof of
lemma 2 (see also Maddocks (1985)), that L(h) is positive on H if, and only if,

〈L(h)−1hxx, hxx〉 < 0. (2.9)
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Figure 3. The integral constraint (E(h(P )), P ). The function E(h(P )) is increasing for P < P∗
and decreasing for P > P∗. At P = P∗ ≈ 0.8175 an exchange of stability occurs. There is an
anomaly on the top of the right-hand curve which can also be found in Wadee et al. (1996,
figure 6).

On the other hand, h(P ) satisfies (1.1) for all P close to P0. Differentiating (1.1) with
respect to P , we see that (d/dP )h(P0) satisfies L(h)(d/dP )h(P0) = −hxx. Hence,
L(h)−1hxx = −(d/dP )h(P0), and (2.9) reads〈

d
dP

h(P0), hxx

〉
> 0.

Differentiating E(h(P )) =
∫∞
−∞ h

2
x(P ) dx with respect to P and integrating by parts,

we conclude that
d

dP
E(h(P )) = −

〈
d

dP
h(P0), hxx

〉
< 0.

Thus, (2.7) and (2.8) are equivalent.

We were not able to verify condition (2.8) rigorously. Numerical simulations using
HOMCONT suggest that the primary buckling state is stable under rigid loading for
P ∈ (P∗, 2), while it is unstable for P ∈ (−∞, P∗) (see figure 3). Here, P∗ ≈ 0.8175.

3. Stability of multimodal solutions

Consider equation (1.1) and the eigenvalue problem for (1.3)

uxxxx + Puxx + u− u2 = 0, (3.1)

L(u)v = vxxxx + Pvxx + (1− 2u)v = λv. (3.2)
We assume that a transversely constructed localized solution h1 of (3.1) has been
found. Then, localized multimodal states hn are sought which resemble n copies of
h1 widely spaced in x. Alexander et al. (1990) proved that L(hn) has n eigenvalues
counted with multiplicity near any eigenvalue of L(h1). In particular, invoking lem-
ma 2.1(iii), there are precisely n eigenvalues of L(hn) close to zero. In §3 a, we will
calculate these eigenvalues. To achieve this, we rewrite (3.1) and (3.2) as first-order
systems

Ux = f(U), (3.3)

Vx = (Df(U) + λB)V, (3.4)
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2090 B. Sandstede

where U, V ∈ R4, f(U) := (U2, U3, U4,−PU3 − U1 + U2
1 ) and BV := (0, 0, 0, V1).

Section 3 b contains stability results for the strut equation under both dead and rigid
loading as well as some remarks on exclusion principles for coalescence of multimodal
states.

(a ) The linearized eigenvalue problem
We will consider

ux = f(u), (3.5)
vx = (Df(u) + λB)v, (3.6)

for u, v ∈ R2m and λ ∈ C. Here, B ∈ R2m×2m, and f : R2m → R2m is smooth with
f(0) = 0.

Hypothesis 3.1. Assume that the spectrum σ(Df(0)) contains simple eigenval-
ues ±α± iβ for some α, β > 0. The modulus of the real part of any other eigenvalue
of Df(0) is strictly larger than α.

We assume that q1 is a transversely constructed localized solution of (3.5). As a
consequence, the equation

wx = −Df(q1)∗w, (3.7)
has, up to constant multiples, a unique bounded solution ψ(x) (see Sandstede 1997).
In fact,

ψ(x) ⊥ (Tq1(x)W
s(0) + Tq1(x)W

u(0)).
Suppose now that at least one of the following two hypotheses is satisfied:

Hypothesis 3.2. (Reversible systems).
(i) Suppose that R : R2m → R2m is a linear involution with dim FixR = m such

that f(Ru) = −Rf(u) for all u. Furthermore, assume that q1 is symmetric, i.e.
q1(x) = −Rq1(−x).

(ii) Assume that
lim
x→∞

e2αx|q1(x)||ψ(x)| > 0.

or

Hypothesis 3.3. (Conservative systems).
(i) Suppose that H : R2m → R is a smooth function such that ∇H(q1(0)) 6= 0 and

〈f(u),∇H(u)〉 = 0 for all u.
(ii) In addition, suppose that

lim
x→∞

e2αx|q1(x)||q1(−x)| > 0.

Hypotheses 3.2 and 3.3 are satisfied for generic reversible or conservative systems.
Note that any Hamiltonian system is in particular conservative as energy is preserved.
In this case, the solution ψ(x) of (3.7) is readily computed.

Remark 3.4. Suppose that hypothesis 3.3 is satisfied. It is then straightforward
to check that ψ(x) = ∇H(q1(x)). In particular, we obtain the asymptotic expansion
ψ(x) = ∇2H(0)q1(x) +O(|q1(x)|2).

Finally, we assume a Melnikov-type condition.

Hypothesis 3.5. M :=
∫∞
−∞〈ψ(x), B(d/dx)q1(x)〉 dx 6= 0.
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Instability of buckling modes 2091

We then define the sets

R =
{

exp
(
− 2πα

β
n

)
;n ∈ N0

}
∪ {0}, A =

{
exp

(
− πα

β
k

)
; k ∈ N0

}
. (3.8)

Note that R is a closed metric space. These sets will be used to characterize multi-
modal solutions. We need one more definition. Suppose that hypothesis 3.1 is satis-
fied. A sequence (xj)j=1,...,k is then called admissible if, and only if, xk+1−j = xj . In
case hypothesis 3.2 holds, any sequence is called admissible. The main theorem can
now be stated.

Theorem 3.6. Let q1 be a transversely constructed localized solution of (3.1).
Assume that hypotheses 3.1 and 3.5, and, in addition, 3.2 or 3.3 (or both) are satis-
fied. There exists then a δ > 0 such that for any n > 2 the following holds.

For any admissible sequence a0
j ∈ A with j = 1, . . . , n − 1 and a0

i ∈
{1, exp(−πα/β)} for some i, there exists an r0 ∈ R, r0 6= 0, with the following
property.

(i) There are C0-functions aj(r) ∈ R for r ∈ R, r 6 r0, with aj(0) = a0
j for

j = 1, . . . , n− 1.
(ii) For any r ∈ R with 0 < r 6 r0, there exists an n-modal solution qn. The

distances between consecutive copies of q1 in the n-modal solution qn are given by

Lj(r) = − 1
α

ln(aj(r)r) + L̃, j = 1, . . . , n− 1,

for some constant L̃.
(iii) The n-modal orbits satisfying (ii) are unique. If hypothesis 3.2 holds, they are

in addition symmetric.
Denote the natural numbers associated with the a0

j ∈ A chosen above by k0
j . There

are then precisely n solutions λj of (3.6) evaluated at qn inside a ball of radius δ
around zero, and

(iv) for M > 0 (M < 0), we have

#{j; 1 6 j 6 n− 1,Reλj < 0} = #{j; 1 6 j 6 n− 1, k0
j is odd (even)}

#{j; 1 6 j 6 n− 1,Reλj > 0} = #{j; 1 6 j 6 n− 1, k0
j is even (odd)}

counted with multiplicity. Moreover, λn = 0 is a simple eigenvalue.

Note that the natural numbers k0
j +n0(r) associated with each a0

j and r, and hence
with any n-modal state described in theorem 3.6, can be interpreted as the number
of half-twists the n-modal state makes near the zero equilibrium.

Existence results of multimodal solutions in four dimensions have been first proved
by Devaney (1976), Champneys (1994) and Härterich (1993). There are no rigorous
stability results for multimodal solutions. Buryak & Akhmediev (1995) argued for-
mally for a coupled nonlinear Schrödinger equation that multimodal solutions should
be unstable; however, they used a criterion which is only necessary but not sufficient
for instability.

Applying theorems 1 and 3 of Sandstede (1995) provides another way of extending
the existence results from four- to higher-dimensional systems. In addition, Sandstede
(1995, theorem 1) shows that the recurrent dynamics near the primary mode q1 is
confined to a four-dimensional locally invariant and normally hyperbolic ‘centre’
manifold W c

hom containing q1.
Before we prove theorem 3.6 in §3 c, some consequences for the strut model are

presented.
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|u| |u|(1)

(2)

(1)

PP

Figure 4. Coalescence of symmetric (solid) and asymmetric (dashed) multimodal solutions via
saddle-node (1) and pitchfork (2) bifurcations (see Buffoni et al. 1996, figure 24).

(b ) Consequences for the strut model
We have the following instability result for multimodal states.

Lemma 3.7. Suppose that h is a localized solution of (1.1). Any multimodal state
composed of copies of h is then unstable under dead and rigid loading.

Proof. Note that L(h) has at least one negative eigenvalue due to lemma 2.1(ii).
We denote the multimodal state by hn and assume that consecutive humps are
widely separated. It follows then from Alexander et al. (1990) that L(hn) has at
least n negative eigenvalues. Therefore, any multimodal state is unstable under dead
loading. That it is also unstable under rigid loading follows from remark 2.4.

For P ∈ (−2,−2 + η) with η > 0 sufficiently small, Buffoni et al. (1996) proved
that the primary buckling mode is transversely constructed and that hypothesis 3.1
is met. Hypotheses 3.2 and 3.3 are also satisfied. Note that hypothesis 3.2(ii) and
3.3(ii) are automatically met since (1.1) is four dimensional. Finally, hypothesis 3.5 is
true. Indeed, using remark 3.4, and the definitions q = (h, hx, hxx, hxxx) and Bqx =
(0, 0, 0, hx), we obtain

M =
∫ ∞
−∞
〈ψ,Bqx〉dx =

∫ ∞
−∞
〈∇H(h(x)), (0, 0, 0, hx(x))〉dx =

∫ ∞
−∞

h2
x dx > 0.

Therefore, theorem 3.6 applies to (1.1). Buffoni et al. (1996) observed numerically the
coalescence of symmetric and asymmetric multimodal buckling states (see figure 4).
Generically, coalescence is expected to occur via saddle-node or pitchfork bifurcations
in the underlying partial differential equation.

Such bifurcations are related to an exchange of stability of the contributing n-
modal localized solutions. In particular, generically, precisely one eigenvalue should
cross the imaginary axis at zero; remember that the operators involved are self-
adjoint. Therefore, the indices, i.e. the number of negative eigenvalues, of the involved
n-modal solutions should differ by one. Note that we have to take the n negative
eigenvalues near λ0 < 0 into account. That immediately prevents coalescence of n1-
modal and n2-modal solutions whenever n1 > 2n2. Furthermore, observe that the
sequence (k0

j )j=1,...,n−1 associated with each n-modal symmetric state is admissible,
i.e. k0

j = k0
n−j holds for all j. In particular, eigenvalues of n-modal symmetric states

come in pairs except for the eigenvalue zero and possibly another eigenvalue if n is
even. Thus, it is likely that just before two symmetric states coalesce one eigenvalue
has to cross the imaginary axis in a pitchfork bifurcation. No such obstacle exists for
asymmetric states. A more refined criterion than just counting unstable eigenvalues
is to include the symmetry of the corresponding eigenfunctions. Indeed, both, the
number of even and odd unstable eigenfunctions, have to coincide for coalescence of
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u

q1 q1

x

(0)

…
pT1

pT2

Figure 5. The discontinuous solution for N = 3 with distances T1 and T2. The discontinuities
are contained in the line spanned by ψ(0).

two multimodal states to occur. For each particular sequence (k0
j ), these numbers

can be calculated by computing the eigenvectors of the matrix A0 appearing in the
proof of theorem 3.6.

(c ) The proof of theorem 3.6
We employ homoclinic Ljapunov–Schmidt reduction as developed in Lin (1990)

and Sandstede (1993) for existence, and in Sandstede (1997) for stability. Since this
method is rather technical, we shall illustrate it for two-dimensional systems, i.e.
u ∈ R2, and refer to the articles mentioned above for the details in several dimensions.

Consider therefore a two-dimensional conservative system, say, and assume that q1
is a homoclinic solution. It is then accompanied by a family pT of periodic solutions
parametrized by their period 2T . We may assume that pT (0) = q1(0) + δ∇H(q(0))
for some small δ depending on pT . Then pT converges to h uniformly on the interval
(−T, T ) as T →∞. We seek multimodal solutions (which, of course, do not exist in
two dimensions). The idea is then to use the distances between consecutive copies
of q1 as variables. Therefore, choose a sequence Tj for j = 1, . . . , n − 1 with Tj > 0
large such that 2Tj is a candidate for the distance between the jth and the (j+ 1)th
copy of q1 in the n-modal solution we want to construct. We may then concatenate
the homoclinic orbit q1 restricted to R− with the solutions pTj defined on (−Tj , Tj)
for j = 1, . . . , n− 1, and finally with the other tail of q1 defined on R+ (see figure 5
for n = 3). The resulting function looks like an n-modal solution; it is, however,
discontinuous whenever it hits the line

{q1(0) + δ∇H(q1(0)); δ ∈ R} = {q1(0) + δψ(0); δ ∈ R}.
Therefore, in order to show existence of multimodal orbits, it suffices to prove exis-
tence of numbers Tj such that all these discontinuities disappear. Since the discon-
tinuous solution meets the line n times, there are n equations which have to be
solved. If we seek symmetric solutions, we only need to solve the first 1

2n equations
corresponding to the interval (−∞, 0]. Indeed, we may then extend the solution to
(−∞,∞) using the symmetry. Similarly, for conservative systems, the last equation
is always satisfied provided the first n− 1 equations are: the remaining discontinuity
occurs in the direction of increasing or decreasing energy, and is therefore zero since
both tails have the same energy by construction.

A similar technique works in higher dimensions. As a result, we obtain a solution
with n discontinuities which are contained in the line spanned by ψ(0). If the discon-
tinuities disappear, a multimodal solution is constructed. It is then possible, though
a non-trivial exercise, to compute these discontinuities. Indeed, they are given by

〈ψ(Tj), q1(−Tj)〉 − 〈ψ(−Tj−1), q1(Tj−1)〉 −Rj((Ti)i=1,...,n−1) = 0, (3.9)
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for j = 1, . . . , n and large Tj (see Sandstede 1993, Satz 3). The remainder terms Rj
are of higher order. Existence of n-modal solutions is equivalent to solving (3.9). We
then have the following proposition.

Proposition 3.8. Fix n > 2. There exists an n-modal homoclinic orbit qn of (3.5)
close to q1 in phase space if, and only if,

a1 sin(−(β/α) ln(a1r)) = R1(a, r),
aj−1 sin(−(β/α) ln(aj−1r))− aj sin(−(β/α) ln(ajr)) = Rj(a, r),

an−1 sin(−(β/α) ln(an−1r)) = Rn(a, r),

 (3.10)

is satisfied where j = 2, . . . , n− 1. In fact, if hypothesis 3.2 holds, it suffices to solve
(3.10) for j = 1, . . . , [ 1

2n], where [x] denotes the largest integer smaller than x; if
hypothesis 3.3 is satisfied, it is sufficient to solve (3.10) for j = 1, . . . , n − 1. The
remainder terms Rj(a, r) are smooth in a = (aj) for aj ∈ (0, 1] up to r = 0 and

Rj(a, r) = O(rγ),
d

dai
Rj(a, r) = O(rγ), (3.11)

for some γ > 0.

Proof. As mentioned above, Sandstede (1993, Satz 3) implies that existence of
n-modal states is equivalent to solving (3.9). In order to derive (3.10) from (3.9), we
proceed as in Sandstede (1997, §6) and refer to that article for the details. The state-
ment about the number of equations which need to be solved is proved in Sandstede
et al. (1997, lemmata 3.1 and 3.2), respectively. In addition, we exploit the following
symmetries. In the conservative case, hypothesis 3.3, we have

〈ψ(x), q1(−x)〉 = 〈∇2H(0)q1(x), q1(−x)〉+O(|q1(x)|2|q1(−x)|)
= 〈q1(x),∇2H(0)q1(−x)〉+O(|q1(x)|2|q1(−x)|)
= 〈q1(x), ψ(−x)〉+O(|q1(x)||q1(−x)|(|q1(x)|+ |q1(−x)|))

by remark 3.4. Under hypothesis 3.2, we have 〈ψ(x), q1(−x)〉 = 〈ψ(−x), q1(x)〉 using
Sandstede (1997, lemma 5.3).

We consider the conservative case first and comment later on the changes necessary
for the reversible case. So, assume that hypothesis 3.3 is met. The proof is similar
to Sandstede (1997, proof of theorem 3), where saddle-focus bifurcations for generic,
non-reversible systems have been studied.

By proposition 3.8, we have to solve

a1 sin(−(β/α) ln(a1r)) = R1(a, r)
aj−1 sin(−(β/α) ln(aj−1r))− aj sin(−(β/α) ln(ajr)) = Rj(a, r),

for j = 2, . . . , n− 1. Inserting r = exp(−(2πα/β)n) with n ∈ N, we obtain

a1 sin(−(β/α) ln a1) = R1(a, r),
aj−1 sin(−(β/α) ln aj−1)− aj sin(−(β/α) ln aj) = Rj(a, r),

}
(3.12)

for j = 2, . . . , n− 1. This allows us to take the limit r → 0 yielding

a1 sin(−(β/α) ln a1) = 0,
aj−1 sin(−(β/α) ln aj−1)− aj sin(−(β/α) ln aj) = 0,
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for j = 2, . . . , n − 1. However, these equations are satisfied by the chosen sequence
a0 = (a0

j) with a0
j ∈ A. Moreover, the Jacobian of (3.12) with respect to a at

(aj , r) = (a0
j , 0) is lower triangular and the entries on the diagonal are given by(

sin
(
− β

α
ln aj

)
− β

α
cos
(
− β

α
ln aj

))∣∣∣∣
aj=a0

j
=exp(−(πα/β)k0

j
)

= (−1)k
0
j+1
(
β

α

)
,

(3.13)
and thus are non-zero. Therefore, since the remainder terms are differentiable due
to proposition 3.8, an application of the implicit function theorem proves (i)–(iii) of
the theorem in the conservative case.

It remains to prove (iv) which addresses the stability properties of the n-modal
orbits. The general approach is very similar to the existence part. In fact, any eigen-
function is an n-modal solution with respect to the primary mode (d/dx)q1 of the
linear non-autonomous equation, (3.6). In Sandstede (1997), a general procedure has
been developed which reduces the calculation of the critical eigenvalues to the com-
putation of eigenvalues of an n× n matrix. Let qn be an n-modal solution given by
(a(r), r). Then, proceeding as in Sandstede (1997, §6), all eigenvalues λ(r) close to
zero of (3.6) evaluated at qn are given by λ(r) = rν(r) for some continuous function
ν(r) such that ν(0) is an eigenvalue of the matrix A0 given by

(A0)ij =


bj + bj−1, j = i,

−bj−1, j = i− 1,
−bj , j = i+ 1,
0, otherwise,

with bj = (−1)k
0
j c sgn(M) for some positive constant c > 0 and j = 1, . . . , n−1; we set

b0 = 0. Note that A0 is tridiagonal, symmetric and the sum of its entries in each row
vanishes. The number of positive and negative eigenvalues for such matrices has been
determined in Sandstede (1997, lemma 5.4). Hence, statement (iv) of theorem 3.6 is
proved for conservative systems.

In case (3.5) is reversible, we proceed as above. The only difference is that we solve
(3.12) for j = 1, . . . , [ 1

2n] instead for j = 1, . . . , n − 1. This completes the proof of
the theorem.

4. Discussion

There are several other fourth-order equations for which multimodal solutions do
exist. Consider, for instance,

utt = −(uxxxx + eu − 1), (4.1)
ut = −(ε2uxxxx − uxx − u+ u3). (4.2)

Equation (4.1) is known as the suspended beam model (see McKenna & Chen 1997),
while (4.2), the extended Fisher–Kolmogorov equation, arises in the study of so-
called Lifschitz points in phase transitions. Both equations exhibit similar features
to (2.5) and therefore the results of §§ 2 and 3 are likely to apply to them as well. For
instance, Peletier & Troy (1995a, b) proved existence of kinks for equation (4.2). Since
these kinks bifurcate from the stable kinks of the Nagumo equation at ε = 0, they
are presumably also stable. Employing theorem 3.6 gives the existence of infinitely
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many stable multimodal kinks of (4.2) once its hypotheses are met. Note that these
assumptions are generic within the class of reversible Hamiltonian equations.

Recently, Lord et al. (this volume) investigated the von Kármán–Donnell equations

κ2∇4w + λwxx − ρφ = wxxφyy + wyyφxx − 2wxyφxy,
∇4φ+ ρwxx = (wxy)2 − wxxwyy,

with (x, y) ∈ R× S1. They discretized the elliptic system in y and obtained a large
system of ordinary differential equations in the unbounded variable x. Numerically,
they found then a primary localized solution with oscillating tails. At least on the
discretized level, theorem 3.6 can be used to confirm existence of multimodal solu-
tions. In work in progress, Peterhof et al. (1997) currently extend theorem 3.6 to
elliptic equations on unbounded domains and justify the numerical techniques used
in Lord et al. (this volume).
I thank Alan Champneys for explaining the strut model as well as the mechanics behind it.
Furthermore, I am grateful to one of the referees who showed me lemma 2.1(ii) and its proof. This
work was partially supported by a Feodor–Lynen-Fellowship of the Alexander von Humboldt
Foundation.
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